Abstract

An expression for the distribution of quantum states of the reaction products of unimolecular dissociations is obtained, based on statistical theory. A recently formulated RRKM-type treatment of unimolecular reactions with highly flexible transition states is used to obtain a distribution of quantum states of the products, by introducing an adiabatic approximation for motion from transition state to products. Any impulsive (nonadiabatic) exit channel effects are neglected thereby. Both the final yields of the quantum states of the products and the time evolution of these states are considered. The time evolution of the yield of the products can permit a direct test of non-RRKM effects and, additionally via the long-time component, of other aspects of RRKM theory. The long-time component of the yield of individual quantum states of the products then provides a test of the additional (here, adiabatic) approximation. Such tests are the more definitive the narrower the distribution of initial E’s and J’s of the dissociating molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call