Abstract

This paper proposes a wire electrical discharge machining (WEDM) product quality prediction method, called MTF-CLSTM, to integrate the Markov transition field (MTF) and the convolutional long short-term memory (CLSTM) neural network. The proposed MTF-CLSTM method can accurately predict WEDM workpiece surface roughness right after manufacturing by collecting and analyzing static machining parameters and dynamic manufacturing conditions. The highly accurate prediction is due to the following two reasons. First, MTF can transform data into images to extract data temporal information and state transition probability information. Second, the CLSTM neural network can extract image spacial features and temporal relationship of data that are separated far apart. In short, MTF-CLSTM predicts WEDM workpiece surface roughness with the MTF model and the CLSTM neural network using static machining parameters and dynamic manufacturing conditions. MTF-CLSTM is compared with 10 related research studies in many aspects. There is only one existing method that is like MTF-CLSTM to predict WEDM workpiece surface roughness by using static machining parameters and dynamic manufacturing conditions. Experiments are conducted to evaluate MTF-CLSTM performance to show that MTF-CLSTM significantly outperforms the existing method in terms of the prediction mean absolute percentage error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call