Abstract
Sufficient conditions are established for the product of two ranked partially ordered sets to have the Sperner property. As a consequence, it is shown that the class of strongly Sperner rank-unimodal rank-symmetric partially ordered sets is closed under the operation of product. Counterexamples are given which preclude most small variations in the hypotheses or conclusions of the two main results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.