Abstract

Pseudomonas syringe PB-5123, a producer of fosfomycin, is resistant to high concentrations of the antibiotic. Two possible mechanisms of resistance have been detected: (i) impermeability to exogenous fosfomycin, even in the presence of sugar phosphate uptake inducers, and (ii) antibiotic phosphorylation. The gene responsible for this last activity, fosC, encodes a ca. 19,000-Da protein and is immediately followed by a second open reading frame, which shows sequence similarities to glutathione S-transferases. FosC uses ATP as a cosubstrate in an inactivation reaction that can be reversed with alkaline phosphatase. Other nucleotide triphosphates cannot be substituted for ATP in this reaction. No relationship between fosC and the previously described genes of fosfomycin resistance was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.