Abstract
For a branching Brownian motion, a probability space of trees is defined. By analogy with stopping times on $\mathbb{R}$, stopping lines are defined to get a general branching property. We exhibit an intrinsic class of martingales which are products indexed by the elements of a stopping line. We prove that all these martingales have the same limit which we identify. Two particular cases arise: the line of particles living at time $t$ and the first crossings of a straight line whose equation is $y = at - x$ in the plane $(y,t)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.