Abstract

The improvement of the performance of roll-to-roll processed polymer solar cell modules through miniaturization of the device outline is described. The devices were prepared using full roll-to-roll processing comprising flexographic printing, slot-die coating and rotary screen printing to create 5 mm wide lines of ZnO, P3HT:[60/70]PCBM, PEDOT:PSS and silver on an ITO-PET substrate. The lines were spaced by 1 mm and the devices were completed by encapsulation using roll-to-roll lamination on both sides using a pressure sensitive adhesive and a multilayered barrier material having a UV-filter with a cut-off at 390 nm, oxygen and water vapor transmission rates of respectively 0.01 cm3 m−2 bar−1 day−1 and 0.04 g m−2 day−1. The final modules comprised 16 serially connected cells. The technical yield was 89% based on the criterion that the Voc had to be larger than 7.2 V. This set of modules gave respectively a voltage, current, fill factor and power conversion efficiency of 8.47 ± 0.41 V, −23.20 ± 4.10 mA, 35.4 ± 2.8% and 1.96 ± 0.34% in the case of modules based on P3HT:[60]PCBM. A total of 1960 modules were prepared for each run and the best power conversion reached was 2.75% for devices based on P3HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated and demonstrates the capacity of polymer solar cells in the context of flexible and printed electronics. Finally a comparison was made between the learning curve for OPV and crystalline silicon solar cells in terms of the cost per watt peak and the cumulative watt peak. OPV as a technology was found to have a significantly steeper learning curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call