Abstract
This paper presents a product identification using image processing and radial basis function neural networks. The system identified a specific product based on the shape of the product. An image processing had been applied to the acquired image and the product was recognized using the Radial Basis Function Neural Network (RBFNN). The RBF Neural Networks offer several advantages compared to other neural network architecture such as they can be trained using a fast two-stage training algorithm and the network possesses the property of best approximation. The output of the network can be optimized by setting suitable values of the center and the spread of RBF. In this paper, fixed spread value was used for every cluster. The system can detect all the four products with 100% successful rate using ±0.2 tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.