Abstract

In this work, an innovative integrated system that is incorporated from solid oxide electrolysis cells and an oxygen separator membrane is assessed and optimized from the techno-economic aspects to respond to oxygen, hydrogen, and nitrogen demands for hospitals and other health care applications. Besides, a parametric comparison is conducted to apprehend the weights of parameters changes on the performance of criteria. Relying on the assessments, from the hydrogen production of 1 kg/s, 23.19 kg/s of oxygen, and 50.22 kg/s of nitrogen are produced. The parametric study shows that by raising the working temperature of the electrolyzer, the cell voltage variation has descending trend and the power consumption of the system is decreased by 19%. Finally, the results of multi-criteria optimization on the Pareto front reveal that in the optimal case, the system payback period is attained at about 5.32 years and the exergy efficiency of 92.47%, which are improved 16.6% and 16.2% compared to the base case, sequentially. Consequently, this system is proposed to consider as a cost-effective and reliable option towards its vital and valuable productions, in the pandemic period and after's.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.