Abstract
Traditional product evaluation research is to collect data through questionnaires or interviews to optimize product design, but the whole process takes a long time to deploy and cannot fully reflect the market situation. Aiming at this problem, we propose a product evaluation prediction model based on multi-level deep feature fusion of online reviews. It mines product satisfaction from the massive reviews published by users on e-commerce websites, and uses this model to analyze the relationship between design attributes and customer satisfaction, design products based on customer satisfaction. Our proposed model can be divided into the following four parts: First, the DSCNN (Depthwise Separable Convolutions) layer and pooling layer are used to combine extracting shallow features from the primordial data. Secondly, CBAM (Convolutional Block Attention Module) is used to realize the dimension separation of features, enhance the expressive ability of key features in the two dimensions of space and channel, and suppress the influence of redundant information. Thirdly, BiLSTM (Bidirectional Long Short-Term Memory) is used to overcome the complexity and nonlinearity of product evaluation prediction, output the predicted result through the fully connected layer. Finally, using the global optimization capability of the genetic algorithm, the hyperparameter optimization of the model constructed above is carried out. The final forecasting model consists of a series of decision rules that avoid model redundancy and achieve the best forecasting effect. It has been verified that the method proposed in this paper is better than the above-mentioned models in five evaluation indicators such as MSE, MAE, RMSE, MAPE and SMAPE, compared with Support Vector Regression (SVR), DSCNN, BiLSTM and DSCNN-BiLSTM. By predicting customer emotional satisfaction, it can provide accurate decision-making suggestions for enterprises to design new products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.