Abstract

It has recently been proposed that one sub-class of type Ia supernovae (SNe Ia) is sufficiently both distinct and common to be classified separately from the bulk of SNe Ia, with a suggested class name of "type Iax supernovae" (SNe Iax), after SN 2002cx. However, their progenitors are still uncertain. We study whether the population properties of this class might be understood if the events originate from a subset of sub-Chandrasekhar mass explosions. In this potential progenitor population, a carbon--oxygen white dwarf (CO WD) accumulates a helium layer from a non-degenerate helium star; ignition of that helium layer then leads to ignition of the CO WD. We incorporated detailed binary evolution calculations for the progenitor systems into a binary population synthesis model to obtain rates and delay times for such events. The predicted Galactic event rate of these explosions is ~1.5\times10^{-3}{yr}^{-1} according to our standard model, in good agreement with the measured rates of SNe Iax. In addition, predicted delay times are ~70Myr-800Myr, consistent with the fact that most of SNe Iax have been discovered in late-type galaxies. If the explosions are assumed to be double-detonations -- following current model expectations -- then based on the CO WD masses at explosion we also estimate the distribution of resulting SN brightness (-13 \gtrsim M_{bol} \gtrsim -19mag), which can reproduce the empirical diversity of SNe Iax. We speculate on why binaries with non-degenerate donor stars might lead to SNe Iax if similar systems with degenerate donors do not. We suggest that the high mass of the helium layer necessary for ignition at the lower accretion rates typically delivered from non-degenerate donors might be necessary to produce SN 2002cx-like characteristics, perhaps even by changing the nature of the CO ignition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.