Abstract

A power-law spectrum attenuated through Compton scattering by an optically thick medium produces spectra that have a characteristic energy of several hundred keV. Add a redshift, and one finds that this model can qualitatively reproduce the color-color diagrams found for individual gamma-ray bursts. This model is easily tested through model fits to burst spectra and through comparisons of the parameters derived from model fits to the limits on parameters derived from the burst log N - log P(sub max) curve. The heavy attenuation makes the amount of energy released in the burst approximately equal to 10(exp 3) times larger than is inferred from the observed flux. The requirements of high optical depth and no photon-photon pair creation place a lower limit on the size of the scattering region. This size suggests that the attenuation occurs in giant molecular clouds in the cores of galaxies. This indicates that gamma-ray bursts are probably from supermassive black holes. If the Lorentz factor of the radiation source is large, the optical depth, and therefore the hardness ratio of a burst, can change over the duration of the burst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call