Abstract

Alloy powder of the Ti–47Al–2Nb–2Cr composition (at.%) with the structure of TiAl (60 wt.%) and Ti3Al (40 wt.%) is prepared by the calcium-hydride method. The mode of the calcium-hydride synthesis is optimized for the Ti–50Al (at.%) model alloy. It is established that the reduction temperature should be no lower than 1100 °C, while the excess of the CaH2 reducing agent should be no lower than 15 wt.%. The main physicochemical and manufacturing properties of the synthesized Ti–47Al–2Nb–2Cr powder alloy, which provide the formation of dense compacts during its subsequent consolidation processes, are determined using modern analytical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.