Abstract

The fatty acid metabolism in Escherichia coli has served as a basic metabolic chassis for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production. In this study, the phaG and phaC1 genes from Pseudomonas entomophila L48 were first cloned as pGRN08. E. coli BL21P (E. coli BL21(DE3) ΔptsG) containing pGRN08 was able to produce 23 ± 3 and 7 ± 0 mg/L homopolymer poly(3-hydroxydecanoate)(P(3HD)) from glucose and xylose, respectively. Next, a gene, PSEEN0908 (encoding a putative 3-hydroxyacyl-CoA ligase), from P. entomophila L48 was found to increase the performance of mcl-PHA production. The induction of the fatty acid biosynthesis repressor (FabR), a transcription regulator that represses UFA biosynthesis, in E. coli substantially increased the mcl-PHA production by an order of magnitude from both unrelated and related carbon source conversion. A mcl-PHA concentration of 179 ± 1 mg/L and a content of 5.79 ± 0.16 % were obtained, where 31 mol% was 3-hydroxyoctanoate (3HO) and 69 mol% was 3HD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call