Abstract
The facile, green, and efficient strategy for the separation of lignin from straw and subsequent production of value-added chemicals is crucial to the current utilization of straw. Herein, up to 23.72% of lignin was isolated from wheat stalk over cheap and green 1-(3-sulfobutyl) triethylammonium hydrogen sulfate ([BSTEA]HSO4) in aqueous ethanol (Vethanol: Vwater = 4:1). The acquired lignin was verified as a p-hydroxyphenyl-guaiacyl-syringyl type, which had a narrower molecular weight distribution, better thermal stability, and higher purity compared with those of the lignin obtained using 1-methyl-3-(4-sulfobutyl)-imidazolium hydrogen sulfate and 1-(3-sulfobutyl) pyridinium hydrogen sulfate. Moreover, a carbohydrate-rich liquid containing [BSTEA]HSO4 was obtained by water removal from the waste liquid after lignin separation and further converted to ethyl levulinate (EL) by a one-pot process in the presence of inexpensive and stable USY zeolite. The yield of EL reached 30.23% at 200 °C for 60 min over the presence of 40% [BSTEA]HSO4 and 60% USY zeolite. Under optimal conditions, the yields of lignin and EL can respectively reach 83.89 and 72.28% of those catalyzed by a fresh catalyst after five cycles. In short, the above-mentioned methods present a green, economic, and efficient route for the extraction of lignin and further treatment of the liquid waste generated during the extraction process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.