Abstract

Studies on decerebrate walking cats have shown that phase transition is strongly related to muscular sensory signals at limbs. To further investigate the role of such signals terminating the stance phase, we developed a biomimetic feline platform. Adopting link lengths and moment arms from an Acinonyx jubatus, we built a pair of hindlimbs connected to a hindquarter and attached it to a sliding strut, simulating solid forelimbs. Artificial pneumatic muscles simulate biological muscles through a control method based on EMG signals from walking cats (Felis catus). Using the bio-inspired muscular unloading rule, where a decreasing ground reaction force triggers phase transition, stable walking on a treadmill was achieved. Finally, an alternating gait is possible using the unloading rule, withstanding disturbances and systematic muscular changes, not only contributing to our understanding on how cats may walk, but also helping develop better legged robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.