Abstract

We have developed four spectroscopic data-activity relationship (SDAR) models of monodechlorination of 32 chlorinated benzene compounds in anaerobic estuarine sediment. The SDAR models were based on combinations of 13C nuclear magnetic resonance (NMR), infrared absorption (IR), and electron ionization mass spectrometric (EI MS) data. The SDAR models segregated the 32 compounds into 17 readily monodechlorinated compounds and 15 not readily monodechlorinated compounds. The SDAR model based on 13C NMR, IR, and EI MS data gave a leave-one-out cross-validation of 93.8%. The SDAR model based on a composite of 13C NMR and IR data gave a leave-one-out cross-validation of 90.6%. The SDAR model based on a composite of IR and EI MS data gave a leave-one-out cross-validation of 84.4%. The SDAR model based on a composite of 13C NMR and EI MS data gave a leave-one-out cross-validation of 84.4%. These reliable SDAR models provide a rapid and simple way to predict whether a chlorinated benzene compound will readily go through monodechlorination. The FDA has filed a patent application on methods of using any combination of spectral data (NMR, MS, UV-vis, IR, and fluorescence, phosphorescence) to model a chemical, physical, or biological endpoint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call