Abstract
Using slag to produce low-carbon building materials is a sustainable strategy to recycle industrial byproducts. However, with a high clinker substitution rate, the delayed early strength development of slag–cement binders severely limits their applicability in practical engineering. This study investigated the mechanism of action by which aluminum sulfate promotes early strength. Its influence on hydration, microstructure, hydration products, mechanical properties, and CO2 emissions was investigated. The analysis indicated that aluminum sulfate accelerated the dissolution of C3S during the induction period, but the precipitation of a large amount of ettringite hindered further hydration. However, this hindering effect decreases as hydration continues. At a 1% dosage, the CO2 emission per unit strength is the lowest. At a 2% dosage, the early strength can be effectively increased by 38.01%. By comparison, alkali-free aluminum sulfate improves the sustainability and mechanical properties better than an alkaline accelerator (sodium carbonate).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.