Abstract

Bioactive natural products are typically secreted by the producer strain. Besides that, this allows the targeting of competitors, also filling a protective role, reducing the chance of self-killing. Surprisingly, DNA-degrading and membrane damaging prodiginines (PdGs) are only produced intracellularly, and are required for the onset of the second round of programmed cell death (PCD) in Streptomyces coelicolor. In this work, we investigated the influence of PdGs on the timing of the morphological differentiation of S. coelicolor. The deletion of the transcriptional activator gene redD that activates the red cluster for PdGs or nutrient-mediated reduction of PdG synthesis both resulted in the precocious appearance of mature spore chains. Transcriptional analysis revealed an accelerated expression of key developmental genes in the redD null mutant, including bldN for the developmental σ factor BldN which is essential for aerial mycelium formation. In contrast, PdG overproduction due to the enhanced copy number of redD resulted in a delay or block in sporulation. In addition, confocal fluorescence microscopy revealed that the earliest aerial hyphae do not produce PdGs. This suggests that filaments that eventually differentiate into spore chains and are hence required for survival of the colony, are excluded from the second round of PCD induced by PdGs. We propose that one of the roles of PdGs would be to delay the entrance of S. coelicolor into the dormancy state (sporulation) by inducing the leakage of the intracellular content of dying filaments thereby providing nutrients for the survivors.

Highlights

  • Microorganisms are offering us many natural compounds used for their therapeutic properties including antibacterial, antifungal, and antitumor agents, amongst many others

  • This morphological change starts with the formation of an aerial mycelium emerging from the substrate mycelium and ends with the differentiation of the aerial hyphae into unigenomic spores that

  • We previously demonstrated that the production of PdG antibiotics plays a role in the programmed cell death (PCD)

Read more

Summary

Introduction

Microorganisms are offering us many natural compounds used for their therapeutic properties including antibacterial, antifungal, and antitumor agents, amongst many others. The most prolific microbial source of these natural products is the filamentous bacteria that belong to the genus. Streptomycetes are Actinobacteria that have a complex multicellular lifestyle [3,4,5,6]. They grow as a branched mycelium consisting of vegetative or substrate hyphae. When nutrients become scarce or upon sensing of physico-chemical stresses, the bacteria enter into a differentiation process. This morphological change starts with the formation of an aerial mycelium emerging from the substrate mycelium and ends with the differentiation of the aerial hyphae into unigenomic spores that

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.