Abstract

The slow, striated muscles of the proctodeum (hindgut) of the cockroach, Periplaneta americana (L.), were examined pharmacologically with reference to the responses evoked by nerve stimulation, glutamate, 5-HT, and proctolin, a myotropic peptide from Periplaneta recently isolated and identified. The graded contractions evoked by repetitive nerve stimulation were simulated by 5-HT and proctolin at threshold concentrations of about 10 −7 and 10 −9 M respectively; responses to glutamate (∼10 −4 M) were not similarly graded. The 5-HT receptors are distinct from other receptors, including the post-synaptic receptors, since they were specifically blocked by bromolysergic acid diethylamide. Proctolin was fully active on TTX-treated or surgically denervated muscle indicating that the proctolin receptors are located on the muscle fibre membrane. Tyramine, at threshold levels 5×10 −8 M, reversibly antagonized the responses evoked by proctolin and by nerve stimulation but was without effect on the 5-HT and glutamate responses. Neurally evoked responses were potentiated by subthreshold concentrations of proctolin but not by glutamate. Pharmacologically, the proctolin and post-synaptic receptors appear to be identical and distinct from the glutamate and 5-HT receptors. Since proctolin is known to be a constituent of an efferent pathway of the proctodeal nerves, the evidence suggests that it may function as an excitatory transmitter substance. Peptidergic transmission is discussed in relation to the ultrastructural organization of the proctodeal nerve terminals which contain neurosectory granules in addition to electron-lucent, synaptic vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.