Abstract

The scheduling problem, which is the core of all approaches related to real-time systems, has received proper attention from the research community. However, while preemptive scheduling has benefited from most of the results to date, the more difficult case of non-preemptive scheduling is still lacking similar achievements. This paper is approaching non-preemptive scheduling from two different angles. First, the number of processors that would allow a feasible schedule for a given task set is analyzed, yielding both lower and upper limits which can be determined in polynomial time. Second, a hybrid scheduling algorithm, combining two widely known techniques, namely EDF and LLF, is proposed and tested. A common feature of both objectives is the transition from a single-instance task to a periodic task. The relationships between these two cases are investigated, resulting in a better understanding of periodic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.