Abstract

This paper describes the theory, simulation, and construction of a two-dimensional number theoretic transform (NTT) convolver. The convolver performs indirect convolution by using the cyclic convolution property of a class of generalized discrete Fourier transforms (DFT's) defined over rings isomorphic to direct sums of Galois fields. The paper first presents the theoretical development of the computational element required for computing the generalized discrete Fourier transform (GDFIT) and its inverse. The theory extends the use of base fields to second degree extension fields and provides efficient choices for transform parameters to minimize hardware. The paper next presents results of recent work in multidimensional transform memory structures, and extends this work to the complete convolution process. The two theories are then "married" to produce efficient, very high speed convolution architectures. Simulation results are presented for a second degree extension field image convolver and constructional details are presented for a fast image convolver using 2 base fields and designed to operate as a peripheral to a fast 32 bit minicomputer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.