Abstract

In this study, we investigated the processing/structure/property relationship of multi-scaled porous biodegradable scaffolds prepared by combining the gas foaming and NaCl reverse templating techniques. Poly(ε-caprolactone) (PCL), hydroxyapatite (HA) nano-particles and NaCl micro-particles were melt-mixed by selecting different compositions and subsequently gas foamed by a pressure-quench method. The NaCl micro-particles were finally removed from the foamed systems in order to allow for the achievement of the multi-scaled scaffold pore structure. The control of the micro-structural properties of the scaffolds was obtained by the optimal combination of the NaCl templating concentration and the composition of the CO2-N2 mixture as the blowing agent. In particular, these parameters were accurately selected to allow for the fabrication of PCL and PCL-HA composite scaffolds with multi-scaled open pore structures. Finally, the biocompatibility of the scaffolds has been assessed by cultivating pre-osteoblast MG63 cells in vitro, thus demonstrating their potential applications for bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.