Abstract

With the widely deployment of powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN in a hardware-aware manner to reduce the computing complexity, while maintaining accuracy, such as weight quantization, pruning, convolution decomposition, etc. However, in typical DNN compression methods, a smaller, but fixed, network structure is generated from a relative large background model for resource limited hardware accelerator deployment. However, such optimization lacks the ability to tune its structure on-the-fly to best fit for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review two of our prior works [1], [2] to address this issue, discussing how to construct a dynamic DNN structure through either uniform or non-uniform channel selection based sub-network sampling. The constructed dynamic DNN could tune its computing path to involve different number of channels, thus providing the ability to trade-off between speed, power and accuracy on-the-fly after model deployment. Correspondingly, an emerging Spin-Orbit Torque Magnetic Random-Access-Memory (SOT-MRAM) based Processing-In-Memory (PIM) accelerator will also be discussed for such dynamic neural network structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.