Abstract

In this study, a composite plain material is composed of woven fabrics containing metal wire with shielding ability and polyester filament that can provide flexibility and far-infrared emissivity. Furthermore, a wrapping process is used to form metal/far-infrared–polyester wrapped yarns, which are then made into metal/far-infrared–polyester woven fabrics. The effects of using stainless steel wire, Cu (copper) wire, or Ni–Cu (nickel-coated copper) wire on the wrapped yarns and woven fabrics are examined in terms of tensile properties, electrical properties, and electromagnetic shielding effectiveness. Moreover, SS+Cu+Ni-Cu woven fabrics have maximum tensile strength, while SS+Ni-Cu woven fabrics have the maximum elongation and SS+Cu+Ni-Cu woven fabrics have the lowest surface resistivity. Stainless steel composite woven fabrics have far-infrared emissivity of 0.89 when they are composed of double layers. electromagnetic shielding effectiveness test results indicate that changing the number of lamination layers and lamination angle has a positive influence on electromagnetic shielding effectiveness of woven fabrics. In particular, SS+Cu+Ni-Cu woven fabrics exhibit electromagnetic shielding effectiveness of −50 dB at a frequency of 2000–3000 MHz when they are laminated with three layers at 90°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call