Abstract
The greater demand for high-quality iron ores has forced the iron and steel industries to utilize low-grade iron ores, such as banded hematite quartzite (BHQ). In the present work, a striped hematite quartzite sample from the Haraginadoni area, in the Sandur schist belt, Ballari District, Karnataka, India, was subjected to characterization studies and conventional mineral processing methods to produce pellet-grade concentrate, assayed as Fe > 63.0%, SiO2 + Al2O3 < 7%, (Al2O3/SiO2 < 0.5). The sample was analyzed as 35.70% Fe, 47.44% SiO2, 0.75% Al2O3, 0.06% Mn, 0.07% TiO2, 0.03% P, 0.02% S, and 0.83% LOI. We focused on two routes of beneficiating BHQ samples: (1) conventional gravity followed by reverse floatation and (2) magnetic separation followed by cleaning of magnetic concentrate by reverse floatation. Route 1, achieved pellet-grade concentrate through assaying, and was 63.73% Fe, 6.20% SiO2, 0.19% Al2O3, 0.03% Al2O3/SiO2, and 0.23% LOI, D80 45 µm, with 70.1% Fe recovery and 62.8% concentration efficiency at 39.6 wt% yield. Using Route 2, the process consisted of WHIMS at −74 µm, D80 54 µm, 10,000 Gauss, and with a 3 mm ball matrix, followed by flotation of the WHIMS concentrate, which produced a concentrate through assaying and was 63.34% Fe, 6.30% SiO2, 0.20% Al2O3 (0.03 Al2O3/SiO2), and 0.20% LOI with 77.4% Fe recovery, achieving a 68.8% concentration efficiency at 44.0 wt% yield, meeting pellet-grade specifications. Comparing and analyzing both routes for the concentration methods, Route 2, i.e., WHIMS and the reverse flotation of WHIMS concentrate, was amenable compared to Route 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.