Abstract

This work investigates the role of microstructure on the radiation tolerance of relaxor-ferroelectric, lead magnesium niobate-lead titanate, thin films for piezoelectric microelectromechanical system (MEMS) applications. Thin films comprised of 0.7Pb[Mg1/3Nb2/3]O3-0.3PbTiO3 were fabricated via chemical solution deposition on platinized silicon wafers. Processing parameters, i.e., pyrolysis and annealing temperatures and durations, were varied to change the microstructure of the films. The functional response of the films was characterized before and after exposure to gamma radiation [up to 10 Mrad(Si)]. Within the total ionization dose studied, all films showed a <5% change in dielectric response and polarization and <15% change in piezoelectric response, after irradiation. While all films showed substantial radiation tolerance, those with large columnar grains showed the highest dielectric and piezoelectric response and, therefore, might offer the best approach for enabling piezoelectric MEMS devices for applications in radiative environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.