Abstract

AbstractIn this paper, we investigated the effect of processing parameters and composite regulation on the structure and property relationship of lightweight low‐permittivity Li2O–Al2O3–B2O3 dielectric system. Li2BAlO4 ceramic and (1 − x)Li2BAlO4–xSrTiO3 ceramics were synthesized using a conventional solid‐state reaction method. Thermodynamic analysis, sintering temperature, phase formation, crystal structure, and microwave dielectric properties were investigated. Thermal analysis revealed a melting temperature of 847°C, suggesting a comparatively low temperature for the sintering of Li2BAlO4 ceramics. Li2BAlO4 crystalized into a monoclinic structure with P21/c space group, with [Al2B2O8] rings connected by [BO3] triangles and [AlO4] tetrahedra through Al–O–Al bridges. Dense Li2BAlO4 ceramics with a relative density of ∼97.7% were sintered at 750°C and had optimal microwave dielectric properties with relative permittivity (εr) of 5.13, quality factor (Q × f) of 22 610 GHz, and the temperature coefficient of resonance frequency (τf) of −112.5 ppm/°C. The 0.88Li2BAlO4–0.12SrTiO3 composite ceramic has excellent microwave dielectric properties with εr = 8.83, Q × f = 14 000 GHz, τf = 4.6 ppm/°C. The ceramics also demonstrated an inert behavior with silver electrodes proving its application in low‐temperature cofired ceramic (LTCC) technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.