Abstract

The study is devoted to the processing of hydroxyapatite (HAp) nanopowder to develop fully dense nanostructured bioceramics by pressureless sintering. The sintering behavior of stoichiometric HAp prepared by hydrothermal processing was investigated by nonisothermal, two‐step, and conventional sintering. By low‐temperature two‐step sintering (TSS), at 900°C and 850°C, with appropriate dwell time, dense bioceramics without final‐stage grain growth and average grain size of 75 nm was obtained. A concept of master sintering curve was applied, enabling control of sintering process, estimation of effective activation energy for sintering of HAp nanopowder, and qualitative understanding of sintering mechanisms. According to estimated activation energy of 412.6 kJ/mol, low sintering temperature and particles' microstructure as the dominant sintering mechanism we proposed diffuse‐viscous flow controlled by grain boundary diffusion. HAp nanoparticles comprising of different interior and boundary regions as ordered/disordered microstructure are found to be of an advantage for low‐temperature sintering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.