Abstract

Electrospinning provides a promising route to quickly produce high‐purity ceramic fibers from readily available sol–gel precursors. Recently, techniques have been developed to enable the production of biphasic nanocomposites on a single fiber, enabling the development of novel composites with connectivities that are difficult to obtain using existing methods. These “composites on a fiber” can be used as a unique anisotropic building block for creating more complex ordered structures. This work examines links between processing, structure, and properties for Janus‐type composite nanofibers for the magnetoelectric BaTiO3–CoFe2O4 system. Specifically, we show how altering the viscosity and conductivity of precursor solutions can provide a unique route to synthesize biphasic composites of a range of sizes and compositions. Furthermore, we show how altering these properties can impact the magnetic and magnetoelectric behavior of these fibers. While this work focuses specifically on the BaTiO3‐CoFe2O4 system, lessons learned can be applied to electrospinning biphasic ceramic materials from a variety of material systems and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.