Abstract

Highly grain‐oriented lead metaniobate (PbNb2O6; PN) ceramics were prepared by a layered manufacturing (LM) process. This process has enabled us to obtain a net‐shaped piezoelectric ceramic component with grain orientation of f∼89%, and improvement in electromechanical properties. The LM feedstock (filament) includes equiaxed (matrix; 90 vol%) and anisometric PN templates (10 vol%), both dispersed uniformly in a thermoplastic binder. The needle‐like PN templates were synthesized by molten salt synthesis technique, while the equiaxed PN powder was prepared by conventional ceramic processing methods. The processing conditions were studied and optimized to obtain orthorhombic phase fine powder and anisometric templates. Samples were obtained through layer‐by‐layer deposition of the filament through a small diameter (500 μm) nozzle. After binder removal, the PN samples were sintered in a temperature range of 1150°–1300°C for 1 h. SEM observation revealed strong grain orientation perpendicular to the deposition direction. Relative permittivity at the Curie point (Tc: 560°C) was 18 100 and 14 600 for the LM and random polycrystalline samples, respectively. Improved properties in piezoelectric figure of merit by 71%, d33 by 23%, and g33 by 31% were observed in the grain‐oriented samples. Remnant polarization also showed about 80% improvement, increasing from 4.5 to 8.1 μC/cm2 for the grain‐oriented LM samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.