Abstract

The reaction bonding of aluminum oxide (RBAO) process was analyzed from the milling of the precursor mixtures to the sintering of the reaction bonded α-alumina as a function of precursor powder composition, Al particle size, temperature, and heating rate. The RBAO process involves both solid-gas (T TM,AI) oxidation of Al + α-Al2O3 powder compacts. It has been demonstrated that maximum Al content of the precursor powder is limited to 60 vol %. In addition, it was observed that the initial Al particle size affects the oxidation behavior significantly and hence final properties of α-Al2O3 compacts. Therefore, the initial Al particle size is very critical for the RBAO process. The critical Al particle size (i.e., the largest Al particle size can be used to obtain dense ceramic materials by the RBAO process) was determined as ∼1.5 μm. It has been demonstrated that heating rate can be used to improve the final microstructures of RBAO ceramics. Although there is no large (>4 vol %) amount of ZrO2 addition, alpha aluminum oxide ceramics with 97% TD have been produced by optimizing the processing parameters such as fine (<1.5 μm) Al particles and slower heating rate during the liquid-gas oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.