Abstract

The factors governing the transport properties of yttrium-doped barium zirconate (BYZ) have been explored, with the aim of attaining reproducible proton conductivity in well-densified samples. It was found that a small initial particle size (50–100 nm) and high-temperature sintering (1600 °C) in the presence of excess barium were essential. By this procedure, BaZr0.8Y0.2O3−δ with 93% to 99% theoretical density and total (bulk plus grain boundary) conductivity of 7.9 × 10−3 S/cm at 600 °C [as measured by alternating current (ac) impedance spectroscopy under humidified nitrogen] could be reliably prepared. Samples sintered in the absence of excess barium displayed yttria-like precipitates and a bulk conductivity that was reduced by more than 2 orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.