Abstract
AbstractThermotropic LCP/LCP fiber blends were prepared by a combination of meltblending and hot‐drawing, using a wholly aromatic copolyester KU‐9211 (also called K161 from Bayer A.G.) and an aliphatic containing LCP (liquid crystalline polymer) PET/PHB60 (from Kodak Tennessee Eastman). Morphological evidence, including scanning electron (SEM) and transmission electron microscopy (TEM), showed that the dispersed phase consisted primarily of highly oriented, 0.5 to 2 μm diameter rigid‐rods of aromatic fibers imbedded in a matrix of predominantly aliphatic LCP fibrils with diameters in the range of 20 to 50 nm. An interphase of approximately 50 nm strongly bonded the two phases together. The fiber blends were characterized using dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), gas chromotography/mass spectroscopy (GC/MS), and rheological measurements. It appears that the processing conditions employed for melt blending had caused PET/PHB60 to undergo chain scission, thereby creating chemical interactions between the two LCP components during the melt blending process. Differential scanning calorimetry (DSC) thermograms as well as nuclear magnetic resonance (NMR) spectra of the extracted fraction from the mixture of 30 wt% K161/70 wt% PET(PHB60) confirmed the chemical interaction between the two thermotropic liquid crystalline polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.