Abstract

During sporulation of the Gram-positive bacterium Bacillus subtilis, transcription of genes encoding spore coat proteins in the mother-cell compartment of the sporangium is controlled by RNA polymerase containing the sigma subunit called sigma K. Based on comparison of the N-terminal amino acid sequence of sigma K with the nucleotide sequence of the gene encoding sigma K (sigK), the primary product of sigK was inferred to be a pro-protein (pro-sigma K) with 20 extra amino acids at the N terminus. Using antibodies generated against pro-sigma K, we have detected pro-sigma K beginning at the third hour of sporulation and sigma K beginning about 1 hr later. Even when pro-sigma K is expressed artificially during growth and throughout sporulation, sigma K appears at the normal time and expression of a sigma K-controlled gene occurs normally. These results suggest that pro-sigma K is an inactive precursor that is proteolytically processed to active sigma K in a developmentally regulated fashion. Mutations that block forespore gene expression block accumulation of sigma K but not accumulation of pro-sigma K, suggesting that pro-sigma K processing is a regulatory device that couples the programs of gene expression in the two compartments of the sporangium. We propose that this regulatory device ensures completion of forespore morphogenesis prior to the synthesis in the mother-cell of spore coat proteins that will encase the forespore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.