Abstract

Shape Memory Alloys (SMAs) are metallic materials with unique thermomechanical characteristics that can regain their original shape after deformation. SMAs have been used in a range of industries. These include consumer electronics, touch devices, automobile parts, aircraft parts, and biomedical equipment. In this work, we define the current state of the art in SMA manufacturing and distribution across the aerospace, healthcare, and aerospace industries. We examine the effect of manganese on the structure and mechanical and corrosive properties of SMA Cu-Al-Ni and discuss the importance of incorporating small and medium-sized enterprises in the study of cu-Al luminum. This research outlines a fundamental example of SME integration in the analysis of superelasticity, a critical instance of SMA activity. It can also serve as a reference for activities such as medical, aerospace, and other industries that target SMA-based equipment and systems. Also, they can be used to look at SMA activation and material upgrade mechanisms. These FEM simulations are advantageous in optimizing and promoting design in fields such as aerospace and healthcare. FEM simulations identify the stress and strength of SMA-based devices and structures. This would result in minimizing cost and usage and lowering the risk of damage. FEM simulations can also recognize the weaknesses of the SMA designs and suggest improvements or adjustments to SMA-based designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call