Abstract

Because of the unique combination of their attractive properties, porous ceramics are considered as candidate materials for several engineering applications. The production of porous ceramics from polysiloxane precursors offers advantages in terms of simple processing methodology, low processing cost, and easy control over porosity and other properties of the resultant ceramics. Therefore, considerable research has been conducted to produce various Si(O)C-based ceramics from polysiloxane precursors by employing different processing strategies. The complete potential of these materials can only be achieved when properties are tailored for a specific application, whereas the control over these properties is highly dependent on the processing route. This review deals with processing strategies of polysiloxane-derived porous ceramics. The essential features of processing strategies—replica, sacrificial template, direct foaming and reaction techniques—are explained and the available literature reports are thoroughly reviewed with particular regard to the critical issues that affect pore characteristics. A short note on the cross-linking methods of polysiloxanes is also provided. The potential of each processing strategy on porosity and strength of the resultant SiC or SiOC ceramics is outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.