Abstract

High-quality magnesium foams were fabricated by an infiltration technology using tailor-made salt–flour mixture space holders. The pore structures and mechanical properties of space holder particles as well as the resultant foam production with spherical pores were characterized in the present study. The particles after high-temperature sintering dissolved rapidly in water due to their porous structures, guaranteeing the weak corrosion and high-purity of magnesium foams. The spherical pores foams exhibited usual stress–strain behaviors and nearly isotropic properties. The yield strengths of the foams increased with the decrease of sample porosity, and the relative mechanical properties of foams were mostly dependent on their relative densities, which obeyed a power law relation. Moreover, porous magnesium materials with tunable pore structures could be fabricated owing to the flexible forming features of salt–flour mixture, showing great application prospects in bone implant material field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.