Abstract

This research aimed processing of Leucaena Leucocepphala in a fluidized-bed reactor with catalysts for renewable energy. The reaction was tested over different type of catalysts such as natural zeolite, kaolin and dolomite. These catalysts were loaded under the heating zone with a supplementary hot filter. The rate of feedstock added in the reactor was 1 kg/h and the pyrolysis temperature was 500 °C. Product yields was calculated after each experiment was completed.The results demonstrated an optimum bio-oil yield of 65.1 wt% after undergoing fast pyrolysis. A reduction in bio-oil yield was observed when natural zeolite, kaolin and dolomite was employed during fast pyrolysis. The minimum bio-oil yield recorded for the dolomite catalyst was 54.5 wt%. On the other hand, kaolin catalyst produces a maximum bio-oil yield of 59.6 wt%. The organic content of bio-oil from kaolin catalyst increased significantly compared with other catalysts. Addition of an ESP condenser, instead of water-cooled condenser resulted in bio-oil with the highest heating value (HHV). Higher heating value of bio-oil derived from natural zeolite catalyst maximized at 35.8 MJ/kg and 37.3 MJ/kg, respectively. The range of hydrocarbon component of bio-oil was C15–C44 for ESP condenser and C12–C35 for water-cooled condenser. The availability of bio-oil was optimized when natural zeolite catalyst added into the process. On the other hand, density and viscosity of bio-oil was increased when dolomite catalyst was used. Additionally, the presence of dolomite catalyst reduced acidic compounds such as 2-Octenoic acid (C8H14O2) and Methyl propiolate (C4H4O2) in the bio-oil. Bio-oil yield was found to be significantly improved by the large pore diameter and small surface area of the catalyst. Among the three catalysts in was observed that kaolin catalyst gave the highest bio-oil yield. Natural zeolite catalyst was found to improved bio-oil product’s thermal quality. However, bio-oil with better viscosity and lower acidity was produced from the dolomite catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call