Abstract

Porous bioglass monoliths have been processed by hydrothermal hot pressing (HyHP) from sol-gel and melt-derived bioglass powders of composition (in mol %): SiO2–CaO–P2O5 (55.0-40.0-5.0) and SiO2–CaO–Na2O–P2O5 (47.2-26.4-23.8-2.6), respectively. An open porosity of >70% ever reached in 3D structures is reported for monoliths issued from sol-gel powders. Dissolution studies were performed in simulated body fluid (SBF) for 1–30 days. The monoliths were analysed using X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to observe the formation of an apatite-like layer and elemental concentration of SBF was evaluated using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). A higher kinetics in the development of apatite layer was observed for sol-gel derived monoliths. This result is explained by the high surface areas of the nanosized sol-gel powders and the possibility of HyHP to create large porosity (mesoporous monoliths) and retain large surface areas. HyHP is also effective in processing 3D-bioglass structures with porosity gradient by co-sintering powders of different size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call