Abstract

Turkey is one of several countries frequently facing significant earthquakes because of its geological and tectonic position on earth. Especially, graben systems of Western Turkey occur as a result of seismically quite active tensional tectonics. The prediction of earthquakes has been one of the most important subjects concerning scientists for a long time. Although different methods have already been developed for this task, there is currently no reliable technique for finding the exact time and location of an earthquake epicenter. Recently artificial intelligence (AI) methods have been used for earthquake studies in addition to their successful application in a broad spectrum of data intensive applications from stock market prediction to process control. In this study, earthquake data from one part of Western Turkey (37–39.30° N latitude and 26°–29.30° E longitude) were obtained from 1975 to 2009 with a magnitude greater than M ≥ 3. To test the performance of AI in time series, the monthly earthquake frequencies of Western Turkey were calculated using catalog data from the region and then the obtained data set was evaluated with two neural networks namely as the multilayer perceptron neural networks (MLPNNs) and radial basis function neural networks (RBFNNs) and adaptive neuro-fuzzy inference system (ANFIS). The results show that for monthly earthquake frequency data prediction, the proposed RBFNN provides higher correlation coefficients with real data and smaller error values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.