Abstract
The goal of this work concerns the synthesis of a binder for restoration purposes that is physically and chemically compatible with dolomitic Roman cement, a historical binder used for the construction of significant architectural heritage objects in the 19thand 20thcenturies. Dolomitic marlstone, the traditional raw material of dolomitic Roman cement, is not being obtained anymore and it is also hard to achieve a constant chemical composition. To address these issues, the experimental synthesis of a low temperature hydraulic binder using locally sourced raw materials, namely dolomite flour and clay, was performed. The developed synthesis technology provides economic and ecological advantages compared to other similar materials, such as lime with pozzolan additive, lime and cement mixtures and magnesium oxychloride cements. The raw material, dolomite flour, is a by–product in the manufacturing process; furthermore, the low firing temperature (800 °C) reduces the power consumption required to obtain the binder.The aim of the work is determination of porosity-related physical characteristics of dolomitic binder that is synthesized by using manufacturing by-product – dolomite flour – as basic raw material to evaluate it’s suitability for restoration purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.