Abstract

The Cu-Fe and Cu-Fe-SiC nanocomposite powders were synthesized by a two step mechanical alloying process. A supersaturated solid-solution of Cu-20wt% Fe was prepared by ball milling of elemental powders up to 5 and 20h and subsequently the SiC powder was added during additional 5h milling. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It was found that the iron peaks in the XRD patterns vanish at the early stages of mechanical alloying process but the dissolution of Fe needs more milling time. Moreover, the crystallite size of the matrix decreases with increasing milling time and the crystallite size reaches a plateau with continued milling. In this regard, the addition of SiC was found to be beneficial in postponing the saturation in crystallite size refinement. Moreover, the effect of SiC on the particle size was found to be significant only if it is added at the right time. It was also found that the silicon carbide and iron particles are present after consolidation and are on the order of nanometer sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.