Abstract

Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices α1 and α2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the α1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call