Abstract

Processing, Microstructure and Properties of Laminated Ni-Intermetallic Composites Synthesised Using Ni Sheets and Al FoilsThe laminated Ni-(NiAl3+Ni2Al3) and Ni-Ni2Al3intermetallic composites were fabricated by reaction synthesis in vacuum using Ni sheets and Al foils. The aluminium layers were completely consumed due to the formation of intermetallic phases. The Ni-Al reaction at 620°C was studied by interrupting in steps the reaction process to observe the microstructural changes. The final microstructure consisted of alternating layers of intermetallic phases and unreacted nickel can be designed easily because the stable structures of the composites depend only on the treating time. Microstructural examinations using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray microprobe analysis (EDX) demonstrated that after 1h of treatment Ni2Al3is the predominant intermetallic phase. The formation of the Ni2Al3phase is thermodynamically favoured over the formation of the other phases and can be understood from the steps occurred through a series of solid state reactions. The tensile strength of the laminated composites increases with an increase of the volume fraction of the intermetallic products. However, it decreases after long heat treatment because the Ni2Al3/Ni2Al3interfaces can very easily delaminate due to a very weak bonding caused by continuous Al2O3inclusions. Observations show that the laminated composites exhibit a mixture of brittle fracture of intermetallics and ductile one of residual Ni layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.