Abstract

Ultra-high-temperature ceramics (UHTCs) are a group of materials that can withstand ultra high temperatures (1600-3000 oC) which will be encountered by future hypersonic re-entry vehicles. Future re-entry vehicles will have sharp edges to improve flight performance. The sharp leading edges result in higher surface temperature than that of the actual blunt edged vehicles that could not be withstood by the conventional thermal protection system materials. To withstand the intense heat generated when these vehicles dip in and out of the upper atmosphere, UHTC materials are needed. UHTC materials are composed of borides of early transition metals. From the larger list of borides, ZrB2 and HfB2 have received the most attention as potential candidates for leading edge materials because their oxidation resistance is superior to that of other borides due to the stability of the ZrO2 and HfO2 scales that form on these materials at elevated temperatures in oxidizing environments. Processing of these materials is very difficult as these materials are very refractory in nature. In this chapter, processes available for powder synthesis, fabrication of dense bodies, and coating processes is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call