Abstract
AbstractFlash sintering has evolved into touch‐free sintering, where free‐standing workpieces can be sintered without attaching electrodes. Instead, the flash is transmitted from the surface of a reactor into the workpiece with superimposition of a magnetic field. Thus, sintering now depends on two independent parameters: the current used to sustain the flash in the reactor and the current flowing through the induction coil. We present a first report on the influence of these two parameters on the quality of the sintered workpiece. The specimens were made from whiteware, consisting of aggregates of ceramic particles interspersed with particles of a glass phase. The results are presented in a map with the reactor current and the induction current as the control variables. Three regimes are identified: insufficient sintering, good sintering, and the formation of defects. The reactor current emerges as an important variable: densification is poor if it is too low, and defects form if it is too high, with high density achieved in the intermediate regime. High induction currents are needed to achieve good sintering. Touch‐free flash sintering has also been shown to sinter and at the same time transform powders of elemental oxides into a single‐phase multicomponent ceramic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.