Abstract

Ultraprecision diamond-ground silicon wafers were irradiated by a high-frequency nanosecond pulsed Nd:YAG laser equipped on a four-axis numerically controlled stage. The resulting specimens were characterized using a white-light interferometer, a micro-Raman spectroscope and a transmission electron microscope. The results indicate that around the laser beam center where the laser energy density is sufficiently high, the grinding-induced amorphous silicon was completely transformed into the single-crystal structure. The optimum conditions for one- and two-dimensional overlapping irradiation were experimentally obtained for processing large-diameter silicon wafers. It was found that the energy density level required for completely removing the dislocations is higher than that for recrystallizing the amorphous silicon. After laser irradiation, the surface unevenness has been remarkably flattened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.