Abstract

ABSTRACTThe properties of sulfur-related defects in silicon are shown to differ dramatically from those that would have been expected on the basis of effective mass theory for a simple substitutional double donor. The ratio of the densities of the sulfur states as measured by capacitance-voltage techniques has been observed to vary in specimens fabricated from the same starting resistivity. Optical absorption studies have shown that the deepest sulfur level has a manifold of ground states which anneal at unequal rates at 550°C. Deep-level measurements show that the thermal emission rate at a given temperature and the variety of effects produced depends on annealing history and total sulfur density. The variability of properties of samples of sulfur-doped silicon is similar to those found for the oxygen donors in silicon, thus suggesting a chemical trend for the column VI impurities in silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.