Abstract
The postsynthetic processing of nanomaterials may allow researchers to reach specific properties, morphologies, or phase regimes that are not accessible by simple synthesis alone. Here, we take advantage of atomic interdiffusion at nanoparticle interfaces to fabricate core/alloy and core/alloy/shell nanoparticles. Modest temperature changes were found to have profound effects for the interfacial alloying of the confined nanosystem. The alloy formation and subsequent interdiffusion allowed us to tailor nanoparticle composition and ultrastructure, as well as surface plasmon response. This processing step, which involves the layer-by-layer formation of a core/alloy/shell morphology, utilizes hydrothermal annealing provided by automated microwave irradiation to control solute deposition, as well as alloy thickness. As a proof-of-principle system, we employed a Au/AuxAg1–x/Ag nanosystem, due, in large part, to its miscible phase diagram and rich plasmonic behavior. Nanostructure morphology was characterized by...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.