Abstract

After disaster strikes, emergency response teams need to work fast. In this context, crowdsourcing has emerged as a powerful mechanism where volunteers can help to process different tasks such as processing complex images using labeling and classification techniques. In this work we propose to address the problem of how to efficiently process large volumes of georeferenced images using crowdsourcing in the context of high risk such as natural disasters. Research on citizen science and crowdsourcing indicates that volunteers should be able to contribute in a useful way with a limited time to a project, supported by the results of usability studies. We present the design of a platform for real-time processing of georeferenced images. In particular, we focus on the interaction between the crowdsourcing and the volunteers connected to a P2P network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.